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Abstract

This paper describes a text-to-speech synthesis system for
Walloon, a Gallo-Romance language spoken in Belgium and
part of France (in the Ardennes department). The system
uses recordings of a translation of The Little Prince, read
entirely by a male speaker (156 minutes) and, for the first
chapters, a female speaker (18 minutes). The corpus was
segmented into sentences and transcribed into phonemes by
a rule-based grapheme-to-phoneme converter. The synthesis
system is based on the Variational Inference with Adversarial
Learning for End-to-End Text-to-Speech (VITS) architecture,
and several models were trained in different conditions: with
or without grapheme-to-phoneme conversion, using or not a
fine-tuned model pre-trained on a French corpus. A perceptual
evaluation campaign was conducted with Walloon speakers.
Results suggest that the models resorting to French data are only
preferred in the training condition with the 18-minute reduced
corpus.

Index Terms: speech synthesis, Walloon, under-resourced
languages, endangered language

1. Introduction

Europe is rich in its linguistic diversity, even though this wealth
is masked by the dominant role of official languages and
threatened by the interruption of intergenerational transmission.
Providing minority languages with automatic processing tools
may not be enough to revitalise them, but it is now essential to
their revalorisation. Among these languages, Walloon has been
officially recognised as an endogenous language of Belgium
since 1990. It is also recognised as one of the languages of
France, as catalogued by the French Ministry of Culture since
1999. It is spoken in the Pointe de Givet, a small territory
north of the Ardennes department. It is a langue d’oil, like
French. Some digital resources are available (e.g., Walloon
Wikipedia, online dictionaries), but no text-to-speech (TTS)
synthesis system. The development of such a system represents
a significant societal issue. It is challenging primarily due to
the limited availability of speech data. Nevertheless, previous
work has suggested leveraging data from related languages —
such as French in the case of Walloon — as a viable strategy to
address this limitation [1, 2].

Speech synthesis, now present on most smartphones and
in public transport, has new educational applications for the
general public when oral transmission is interrupted. TTS
speech synthesis systems have recently been developed for
minority languages such as Occitan [3] and Breton [4]. A
recent architecture, the Variational Inference with Adversarial
Learning for End-to-End Text-to-Speech (VITS) [5], has
enabled high-quality speech synthesis across a very wide

range of languages (Meta’s Voicebox [6]). Systems such as
Microsoft’s VALL-E [7], or XTTS [8] include under-resourced
languages. Nevertheless, Walloon remains notably absent from
these developments.

Recent advances in TTS architectures have enabled the
development of high-quality TTS for unseen speakers using
as little as one minute of speech, an approach commonly
referred to as zero-shot TTS (ZS-TTS) [5, 9, 7, 10]. Building
multilingual ZS-TTS systems remains more challenging, often
requiring complex model architectures [8]. Training a system
using two to three hours of recorded speech is feasible
with current mainstream models [11, 5, 12]. Two to three
hours is approximately the time it takes to read The Little
Prince, the second most translated book after the Bible. We
had a rewritten version read in standardised Walloon by a
native male speaker, and the first chapters read by a native
female speaker. The corpus read according to a “neutral”,
supradialectal or transregional pronunciation served as a basis
for the development of an orthographic-phonetic conversion
system, intended to prove robust to other writing systems,
inspired by Feller [13]. A grapheme-to-phoneme (G2P)
conversion system has been written in the form of rules that can
be parameterised to adapt to different regions. Let us specify
that the G2P task, although more straightforward than for a
language like English, requires hundreds of rewrite rules. It was
inspired by a rule-based G2P converter for French [14, 15, 16],
which was also used in the experiments we will describe.

Since the early 1990s, Walloon has undergone a
standardisation process known as rifondou walon [17, 18],
which is now widely disseminated, including through platforms
such as Wikipedia. Its orthography is inspired by the
more phonetic system proposed by Feller [13], which
incorporates French orthographic conventions and retains most
morphological markers of number, gender and person. Similar
to the unified spellings of Breton and Occitan, rifondou walon
is designed to be read according to the speaker’s regional
phonological norms. For instance, in the word bijhe ‘North
wind’, the diasystemic digraph <jh> may be realised as [g]
in Liege, [y] in Verviers, and either [h] or [[] in other parts of
Wallonia. The system is intended to encompass several possible
pronunciations, including diphthongs, affricates and phonemes
that do not exist in French [19, 20]: /&/ <én> (alongside
/€/ <in> and /&/ <un>), long vowels like /o:1/ <&> or
consonants like /h/ <h> or /x/ <xh>.

The TTS system we designed, the first one for the
Walloon language to our knowledge, is available online'. The
main corpus, along with additional test recordings, and the

https://github.com/lisn-speech-synthesis/
Walloon-Synthesis-VITS



methodology employed are described in more detail in the
following section (Section 2). Several models were trained in
different conditions: with or without G2P conversion, using
or not a fine-tuned model pre-trained on a French corpus.
The computational experiments we conducted are reported
in Section 3, alongside results from objective metrics. A
perceptual evaluation campaign was conducted with Walloon
speakers, the results of which are provided in Section 4.

2. Material and method
2.1. Dataset

The dataset comprises audio files in Wave format (recorded
in a quiet room, in stereo and sampled at 44.1 kHz), each
corresponding to a chapter of The Little Prince and additional
data, recorded by two native Walloon speakers (one male, one
female)z. The male speaker read the entire book, while the
female speaker only read the first chapters, totalling 156 and
18 minutes of speech, respectively. In addition, translations
of Aesop’s fable “The North Wind and the Sun” into central,
southern, western and eastern varieties of Walloon were used,
coming from a speaking atlas of Belgium [21]. A few dozen
sentences of this atlas were reread by the two speakers and
kept aside as unseen data for a perceptual evaluation, totalling
approximately 4 minutes of speech per speaker.

2.2. Model architecture

The TTS synthesis system we have developed is based on the
VITS model, which uses a conditional variational autoencoder
(CVAE) framework augmented with adversarial learning,
enabling end-to-end learning from text input to speech output.
This model integrates the conditional generative capabilities of
CVAEs with the robustness of generative adversarial networks
(GANSs) [22] to produce natural-sounding speech. Figure 1
presents a simplified training and inference workflow. Given a
text, CVAE models the conditional distribution of speech. This
process is achieved using a dual-encoder setup: (1) a posterior
encoder maps the input speech to a latent space using variational
inference; (2) complementing this encoder, a prior encoder
uses text input to generate a prior distribution over the latent
space, facilitating the generation of speech that aligns with the
given text [5]. To increase the expressive power of the model,
normalising flows are applied to the distribution. Adversarial
training incorporates a discriminator that critiques the output of
the generative model, increasing the quality of the generated
voices. Also, phoneme duration is predicted stochastically,
allowing the synthesised speech to exhibit realistic temporal
variations.

During training, the posterior and prior encoders
collaborate to map the speech and text inputs into a shared
latent space, which is then used to reconstruct the target speech
spectrogram. The normalising flows enhance the mapping
precision by transforming a simple prior distribution into a
complex one, thereby capturing the intricate characteristics of
speech. The role of the discriminator in this setup is to ensure
that the generated speech not only sounds natural but also

2The audio corpora of The Little Prince are available upon request
from the authors of this article. They are subject to special jurisdiction
until 2032, because the author of the book, Alexandre de Saint-Exupéry,
died for France. The audio corpus of the male speaker is also
available at https://wa.wikisource.org/wiki/Li_Ptit_
Prince_ (Hendschel-Mahin, _2023)

closely matches the target spectrograms in terms of rhythm and
intonation.

2.3. Preprocessing and data preparation

Preprocessing and data preparation for the VITS model are
critical to ensure the quality and consistency of the speech
synthesis output. These processes are divided into data
formatting, text preprocessing and audio preprocessing.

The audio files were segmented into sentences. The
sampling rate was reduced to 22 kHz, and the files were
converted to mono to conform to the model requirements.
Classical encoding issues, typical of natural language
processing, were fixed.  For example, input characters,
transformed into lower case, have been normalised so that they
are consistent with the rifondou walon orthography (e.g., <a>
replaced by <a>). Moreover, acronyms were expanded, and
numbers were converted into letters.

As illustrated in Figure 1, for the experiments using
phonemes as input, a G2P converter was employed to map
the text to its phonemic representation in the International
Phonetic Alphabet (IPA). This phonetic encoding is particularly
advantageous for languages like Walloon, whose orthographic
conventions exhibit some irregularities. A 300-rule converter
was thus written: particular attention was paid to vowel
lengthening, word-final consonant devoicing (e.g., the digraph
<jh> /3/ devoiced into [g]), gemination, liaison and
assimilation phenomena. However, the VITS model is designed
to work effectively without explicit phonemisation. It is,
therefore, a question of interest whether a phoneme-based
approach or a grapheme-based approach performs better.

The model also incorporates an alignment estimation
strategy that does not rely on external aligners. Instead, it
uses an internally developed Monotonic Alignment Search
to optimise the alignment between the text and the audio.
Audio processing consists of converting the raw signal
into mel-spectrograms, which serve as the target for the
reconstruction loss during model training.

To stick to a “neutral” Walloon pronunciation, the male
speaker, especially, read The Little Prince with a slow speech
rate, resulting in long pauses. Therefore, a voice activity
detector was used [23] (with —60 dB and 50 ms thresholds),
and the utterance-internal pause duration was reduced by 50%
in the original recordings of this speaker.

2.4. Training process

The model is trained on a dataset consisting of paired
text and audio files. Each audio file is converted into
a mel-spectrogram, which serves as the target output for
the model. Training the VITS model involves three loss
functions: (1) the reconstruction loss is the primary loss
function used to minimise the difference between the generated
mel-spectrogram and the target spectrogram from the training
data; (2) Kullback-Leibler divergence (Dki), used in the
variational auto-encoder component of the model, encourages
the encoded latent variables to approximate a prior distribution,
which helps regularise the model and avoid overfitting; (3) the
adversarial loss, employed as part of the GAN framework,
involves training a discriminator alongside the generator (the
main model) to distinguish generated audio from real audio.
The model uses the Adam optimiser with parameters 51 =
0.8 and B2 = 0.99, a learning rate of 2 x 10~* with a
decay of 0.999875 was applied throughout the training process.
The chosen batch size was 32. Throughout the training
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(b) The block diagram illustrates the steps for synthesising speech.

Figure 1: The two block diagrams illustrate the steps for
training and synthesising speech with the TTS system.

process, model performance was monitored on a validation set
comprising 10% of the data from The Little Prince, randomly
selected per speaker. An additional 10% was held out as a
test set to compute objective evaluation metrics and compare
the generated audio against the original recordings across
different model configurations. The loss monitored during
training corresponds to the total loss, which is the sum of the
reconstruction, Dxp., duration, adversarial and feature-matching
components.

3. Computational experiments
3.1. Experimental setup

Several experiments were conducted, using distinct approaches
to input representation and training strategy. In the
character-based setting, plain text is used directly as input
without the need for G2P conversion: the model was trained for
6,000 epochs. In the phoneme-based setting, G2P conversion
was applied before training (an approach that allows for
adaptations to different dialects more elegantly than spelling
tricks). The model was also trained for 6,000 epochs.

In the fine-tuned configuration, a model pre-trained on
French — a language closely related to Walloon — was
employed. This pre-trained model was subsequently fine-tuned
using our Walloon dataset. A custom model was built
by combining two datasets for training: SIWIS [24] and
CSS10 [25], with care taken to match voice characteristics.
Specifically, the first three sections of the SIWIS dataset were
used, segmented for the female voice, while the entire CSS10
dataset was used for the male voice. Graphemes served as the
input representation during both training and inference in this

configuration. The model was initially trained on French data
for 3,000 epochs and subsequently fine-tuned on Walloon data
for 2,000 epochs. Similarly, in a fourth configuration, a model
was trained using French data converted into phonemes via a
rule-based G2P converter [15]. This training also followed a
two-stage process: 3,000 epochs on French data, followed by
2,000 epochs on Walloon data.

The models were trained on a GPU NVIDIA Tesla V100
with 32 GiB of RAM, and each training session lasted
approximately one day to complete 800 to 1,000 epochs. Across
all experiments, model weights were saved every 100 epochs.
The quality of the generated speech improved significantly as
the training progressed, with notable enhancements observed
after approximately 3,000 epochs, including fewer phonetic
errors and enhanced fluency in the synthesised voices.

3.2. Objective evaluation

Three objective metrics were used to assess the quality of
the model: Mel Cepstral Distortion (MCD) [26], Perceptual
Evaluation of Speech Quality (PESQ) [27] and Speaker
Encoder Cosine Similarity (SECS) [28]. Moreover, we
resorted to an automated mean opinion score (MOS) prediction
system, the UTMOSv2 [29]. The results of this system will
be commented on in Section 4, where we will compare it
to the perceptual MOS experiment. For the three metrics,
dynamic time warping was applied to handle the different
sizes of the original and the generated audio. These metrics
provided a quantitative assessment of the model’s performance,
complemented by pause-based measurements. They were
computed on the 10% test set (with reduced pauses for the male
voice). The values are shown in Figure 2, for the male and
female voices, comparing how similar the generated audio is
to the original. For the PESQ and SECS metrics, the higher
the bars, the better the evaluation, and conversely for the MCD
metric. Confidence intervals of 95% were generated using
bootstrapping. The extrema of the error bars on Figures 2 and 3
correspond to the 0.025 and 0.975 quantiles on 1,000 bootstrap
samples.

Despite a considerable margin of error, particularly for the
female voice, PESQ values are consistently higher for the male
voice than for the female voice. The phoneme-based approach
yields results comparable in quality to the grapheme-based
setup. In the French fine-tuned configuration, PESQ scores
for the male voice are similar to those of the Walloon-only
approach. In contrast, the female voice exhibits a marked
improvement, suggesting enhanced perceptual quality. A
similar trend is observed with the SECS metric, although this
measure is primarily intended to quantify voice differences
between distinct speakers. The MCD metric aligns relatively
well with the PESQ and SECS results, revealing a notable
disparity in reported distortion between the male and female
voices. The highest reported distortion was observed in the
Walloon-only phoneme-based female model. However, for the
female voice, the type of linguistic input — phoneme versus
grapheme — appears to exert a greater influence on the results
than the inclusion of French data during training. The lowest
reported distortion was the French-pretrained phoneme male
voice model, which is consistent with the PESQ results.

As stated above, the pauses resulting from focusing
on reading in a “generic” Walloon could be problematic.
Utterance-internal pauses and speech intervals were measured
using the pyannote voice activity detector [23] (with the
same thresholds as stated above) and analysed using a Python
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Figure 2: PESQ, SECS and MCD values for the male voice and
the female voice (Fr = French pretrained; Wa = Walloon only;
g = grapheme-based; p = phoneme-based).

scrip’.  The 50 ms threshold may appear short compared
to values reported in other studies [30]. However, this
value was selected to account for intervocalic pauses that we
perceived and judged to be erroneous. In our synthesised

3http://github.com/lisn-speech-synthesis/Walloon-Synthesis-Results
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Figure 3: Ratios between synthesised and original

utterance-internal pause counts for the male voice (larger
corpus) and the female voice (reduced corpus), (Fr = French
pretrained; Wa = Walloon only; g = grapheme-based; p =
phoneme-based).

speech, such pauses typically ranged between 70 and 80 ms.
Figure 3 presents the results as ratios between the number of
pauses in the synthesised utterances and those in the original
recordings. The different models appear to perform similarly
in maintaining natural pausing close to the original audio, with
pause ratios slightly below 1. The exception is the Walloon-only
grapheme-based model, which departs from the others: it tends
to make more silent pauses than the original with the male
synthetic voice. Pauses were analysed as a means of obtaining
an objective measure aligned with our perceptual evaluation of
pause-related issues. However, a more fine-grained prosodic
analysis may be necessary, as the perceptual salience of pauses
is not solely determined by their number and duration. Even a
few brief pauses, as short as 70 ms, can sound unnatural when
occurring in atypical positions within a sentence.

The performance of G2P conversion has not been formally
assessed in Walloon, unlike that of French, where the word error
rate was estimated at less than 1% [14, 15]. Informal tests lead
us to expect a similar percentage in Walloon. In any case, no
apparent G2P conversion errors were observed in the test corpus
used for the perceptual experiment described in the remainder
of this paper.

4. Perceptual test
4.1. Protocol: stimuli, task and participants

A perceptual evaluation campaign was conducted with Walloon
speakers.  For this purpose, 20 sentences with the male
voice and 16 sentences with the female voice were used from
translations of the fable “The North Wind and the Sun”.
The written sentences were synthesised, and one version per
sentence was selected to balance the number of configurations
(with or without G2P conversion, with or without French data).
Consequently, the experiment included 20 synthetic stimuli
with the male voice and 16 synthetic stimuli with the female
voice, in addition to the 36 original stimuli.

Given the large combinatorial space, it would have been
impractical for participants to listen to 10 versions of each
sentence. Thus, 72 stimuli, averaging 10 seconds in length,



Table 1: Results of the 1-5 MOS perceptual test. The mean values for the synthesised utterances are reported together with 95%
confidence intervals, estimated using 1,000 bootstrap samples (smaller value pairs). Legend: G = Grapheme; P = Phoneme.

Using French data Walloon data only

Voice Original G-based P-based G-based P-based

4.56 423 422 4.14 4.02
Male 4.48 4.10 4.01 4.03 3.90

4.40 3.97 3.85 3.93 378

4.61 4.13 4.14 3.63 2.79
Female 4.55 4.10 3.96 3.38 2.70

4.49 4.07 3.79 3.13 2.60

Table 2: Results of the 1-5 automatic MOS test with UTMOSv2. The mean values for the synthesised utterances are reported together
with 95% confidence intervals, estimated using 1,000 bootstrap samples (smaller value pairs). Legend: G = Grapheme; P = Phoneme.

Using French data Walloon data only

Voice Orig. G-based P-based G-based P-based
Male 337 ' 296 22 282 " 289 % 287 3
3.24 273 2.61 2.74 2.68

Female 336 . 210 >~ 243 % 18 *'' 213 >
3.17 2.04 2.18 1.68 1.92

were selected and integrated into the online PsyToolkit
platform [31]. After providing personal information (e.g., age,
gender), participants listened to three pre-test stimuli as part
of a familiarisation phase (these were not included in the final
analysis). They then completed the main test by listening
to the stimuli presented in a randomised order — unique to
each participant — and were given the opportunity to leave
comments at the end of the session. The actual task consisted
of a MOS test, in which subjects had to rate the quality of the
sentences they heard on a scale from 1 (very poor) to 5 (very
good). The test lasted 15-20 minutes.

The participants (23 in total: 17 male, 5 female and 1 who
preferred not to disclose their gender) were 63 years old on
average. They were drawn from various regions of Wallonia:
8 from the Centre, 9 from the South, 5 from the East, and 1
from the West.

4.2. Results

The results are reported in Table 1. As for the previous objective
metric measurements, 95% confidence intervals are reported
along with the mean values for the synthesised utterances.
They were estimated using 1,000 bootstrap samples. Hence,
the top and bottom values account for the 0.975 and 0.025
quantiles, respectively. Moreover, the results were subjected
to an analysis of variance (ANOVA), carried out with the
participants’ responses as the dependent variable, and stimulus
types as fixed factors (10 levels), using the R programming
language [32]. The stimulus type has a significant effect.
[F(9,1646) = 62.93; p < 0.001]: the originals (around
4.5) are rated better than the synthesised stimuli (around 4.0
in most conditions). The synthetic female voice using only
Walloon data is judged worse (around 3.4 based on graphemes,
2.7 based on phonemes), with highly significant differences
according to a Tukey test [p << 0.001]. However, according
to this post hoc test, the male synthetic voice does not show

significant differences depending on whether G2P conversion
and fine-tuning are used.

Compared to the perceptual MOS, the results from the
automatic MOS evaluation of UTMOSv2 presented in Table 2
are significantly lower, with an average score of 2.68, as
opposed to 3.92 for the perceptual MOS. The original recording
received consistent ratings of 3.37 and 3.36 for the male and
female voices, respectively, which are notably lower than the
perceptual MOS scores of 4.48 and 4.55. These differences
suggest that the system, primarily optimised for the English
language [29], struggled to generalise effectively to the Walloon
language. While a trend is still observed between the female
and male synthetic voices, the gap is smaller compared to the
perceptual MOS. Within the male voice category, the scores
for all four models fall within the margin of error. Regarding
the female voices, some differences can be observed among the
synthetic voices, although these do not align with the perceptual
MOS. The lowest score was attributed to the grapheme-based
Walloon-only model, whereas the phoneme-based version
received the lowest score in the MOS evaluation. Interestingly,
the UTMOSv2 system tends to assign lower ratings to the female
grapheme-based models compared to the other female models,
which contrasts with the trend observed using the MCD metric.

5. Conclusion

This study highlighted critical insights for implementing TTS
synthesis systems in low-resourced languages: it explored
the potential of models for Walloon using a limited dataset.
Different input representations and training strategies were
evaluated: grapheme-based or phoneme-based, and whether
or not a French pre-trained model was used for fine-tuning.
The results of a perceptual test, corroborated by objective
metrics (except for the Auto-MOS test, which did not seem to
generalise well on our data), showed that the grapheme-based
model and the slightly more complex phoneme-based model
produced comparable quality.  Using French data only



proved valuable in the training condition with the 18-minute
reduced corpus; the impact is negligible with a 156-minute
corpus. This finding is interesting, as it may be generalised
to other lesser-resourced languages, which present similar
challenges for speech technologies. Additionally, different
data augmentation techniques could be explored to improve
performance.

Grapheme-to-phoneme conversion, while not directly
improving the results in this study, presents a promising avenue
for future research. It offers enhanced control over the phonetic
output, which can be tailored to accommodate different dialects.
This flexibility aligns with one of the core principles of rifondou
walon (‘normalised Walloon’), where certain digraphs can
be pronounced differently depending on the region. Further
experiments and listening tests are necessary to determine
whether the parameterisation of a few G2P conversion rules
can enhance the system’s acceptability and better reflect the
diversity of Walloon varieties.
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